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Al can benefit neurosurgeons

Diagnosis

Errors Reduction .
Cost Reduction

Improve accuracy
of diagnosis

Treatment and
prognosis

Detect
abnormalities from
clinical data




Al

can assist surgeons in:

Diagnosing the condition

Selecting patients for the right treatment

Helping patients to make the right decisions

Automatic tumor segmentation

Epileptogenic zone localization
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Al can assist surgeons in:

predicted the glioma

Selecting appropriate candidates for epileptic surgery

Predicting symptomatic cerebral vasospasm after
aneurysmal subarachnoid hemorrhage

Predicting tissue damage following acute ischemic
stroke

Effective and efficient identification of glioma tissue
7




Al can assist surgeons in:

lumbar disk degeneration detection

Cluster patients suffering from osteoporotic vertebral fracture based on
their pain progression helping their management

classifying intra-axial cerebral tumors including high- and low-grade
gliomas, metastatic tumors and malignant lymphomas

lateralizing the affected brain hemisphere in the most common
pharmacoresistant and surgically remediable type of epilepsy in adults,
temporal lobe epilepsy (TLE)




Al and Postoperative Care

predict Predict
Prognosis complications

wound
complications

track data for identify risk
aftercare factors

mortality

analyse large
data sets



Stroke

Stroke
detection

large vessel
occlusion
detection

Type of
Stroke
detection

Predict imaging
and clinical
outcomes

Stroke CT Score
grading

triage,
quantification,
surveillance

10
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Neuro Oncology
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Al assisted rules in Neuro-Oncology
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B I'a | f Ca ncer (Al and optical histology (SRH))
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SRH imaging Multi-modal, multi-label represention learning DeepGlioma molecular prediction

/ Patient MRI \ /SRH patches SRH encoder \ / Automated tumor

. segmentation Masked label
SRH embedding -

training
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* Molecular classification has transformed the
management of brain tumors by enabling more
accurate prognostication and personalized treatment.
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Artificial-intelligence-based molecular classification of diffuse gliomas using rapid,
label-free optical imaging, Nature Medicine volume 29, pages828-832 (2023)
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Brain Tumor Diagnosis
during Surgery




Aidoc stroke triage mobile interface™




Headache i

e Al-based diagnostic model.

Al assisted triage of headache patients to
appropriate clinicians.

e

The role of Al in headache medicine: potential and Peril, American
Headache Society, 2023.
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Neuromuscular Disorders

e Convolutional neural network model for identifying
the neurological visual disorder.

* Incremental variance learning-based ensemble
classification model for neurological disorders.

e Artificial intelligence-based early detection of
neurological disease using noninvasive methods
based on speech analysis.

* Deep learning for neuroimaging analysis and
disease prediction.

Artificial Intelligence for Neurological Disorders, 1st Edition - Academic Press, 2022



Al in other sections

Pain Movement

Management Sleep Medicine Disorders Brain Injury

Clinical Neurodevelopme Neurocritical Vascular
Neurophysiology ntal Disabilities Care Neurology

Behavioral Multiple

Neurology Child Neurology Sclerosis Neuroimaging

Neurorehabilitati Neurodegenerati
on ve Disease

Neurooncology
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Near-Body Mental Status
Monitoring
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 Combined with Al, the mental statuses of patients
can be intervened in time to avoid tragedies.

e E.g. stress monitoring system, where the analyzed
data came from the fusion of
electroencephalography (EEG) and
electromyography (EMG).

18
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Automatic vertebral

segmentation

This technique is particularly useful
during surgical navigation for the
placement of pedicle screws

20
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https://www.sciencedirect.com/topics/medicine-and-dentistry/pedicle

Vertebral segmentation on CT scan

Segmentation of the lumbosacral spine based on intraoperative images from

cone beam computed tomography (CBCT) for the planning of pedicle screw
placement using surgical navigation.
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using convolutional neural networks


https://www.sciencedirect.com/topics/medicine-and-dentistry/lumbosacral-spine

Classification of mtervertebral
1_
disc degeneration

automatic recognition of degenerative
stages and certain morphological changes
such as disc protrusion or disc herniation
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https://www.sciencedirect.com/topics/medicine-and-dentistry/intervertebral-disk-hernia

Deep learning-based high-accuracy

qguantitation for lumbar intervertebral disc
degeneration from MRI
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Nature Communications volume 13, Article number: 841 (2022)
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https://www.nature.com/ncomms

Al based auto-analyses of spine alignment

irrespective of image quality with prospective™"

validation

:
Assessment of spine

Captures of
Coronal X-ray

e Dilation ,ste v &correction using Al.
segmap
@

End Vertebrae Landmarks Landmarks  Spine Bad Point Cobb Angle
Heatmap Heatmap Coordinates Segmap Correction Prediction

landmark

detection S
Dilation spine 3

segmap

Captures of
Sagittal X-ray

g

® © @ ©

Landmarks Landmarks  Spine Bad Point Cobb Angle
Prediction

Heatmap Coordinates Segmap Correction

(1] Deep learning network

eClinicalMedicine, Volume 43, January 2022, 101252 “

End vertebrae 1 1

HRNet Eri alignment in the

—o¢ localization Cobb angle f | .

— CvE landmark e : cdiciion management ot scoliosls,
detection “Bad point detection ;


https://www.sciencedirect.com/journal/eclinicalmedicine
https://www.sciencedirect.com/journal/eclinicalmedicine/vol/43/suppl/C
https://www.sciencedirect.com/topics/medicine-and-dentistry/scoliosis
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2-step deep learning model for landmarks
localization in spine radiographs

Heatmap . Heatmaps

. " and corners

Original image

with corners
Original image

landmarks localization is used to allows
characterizing spine alignment in term
of angles, distances and shape that
could be useful e.g. for surgical
planning or monitoring the progression
of deformities
Scientific Reports volume 11, Article number: 9482 (2021)

First prediction
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https://www.nature.com/srep
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Calculation of spinal deformity ).
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Al for making treatment decisjions

Al Algorithm Surgeons

The diagnostic process and the
treatment decision for a spinal
pathology is generally established
by the surgeon based on scientific
data, good practice
recommendations and his/her
clinical experience.

adult spinal deformity is an area
that requires multicenter analysis of
several hundreds of medical
records to be able to draw
conclusions that are significant for
clinical practic

27


https://www.sciencedirect.com/topics/medicine-and-dentistry/adult-spine-deformity
https://www.sciencedirect.com/topics/medicine-and-dentistry/medical-record
https://www.sciencedirect.com/topics/medicine-and-dentistry/medical-record
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predict the functional outcome
and the quality of life
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Planning of spinal deformity
corrections

Coronal ROES%
=(a;—a,y)/a

Sagittal ROES%
= (b;=by)/b,
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Demonstrating the successful application of
synthetic learning in spine surgery for training

multi—center models with increased patient privacy

classification of spine radiographs as abnormal or normal.
a

Scientific Reports volume 13, Article number: 12481 (2023)
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https://www.nature.com/srep

Deep learning encodes robust discriminative

neuroimaging representations to outperformi™"
standard machine learning

DIMENSIONALITY REDUCTION DEEP LEARNING (DL)
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Nature Communications volume 12,

Article number: 353 (2021)
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https://www.nature.com/ncomms

Spinal cord injury: molecular mechanisms
and therapeutic interventions

* axon regeneration and neural circuit remodeling,
but the results have not been ideal.

a Lengthening of corticospinal tract b Signaling pathway involved
« VNGF
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Artificial intelligence-driven virtual

rehabilitation for people living in the
community

* Virtual Rehabilitation (VRehab)

| l’mgnm .

H 1 '
Clinician Patients at Home Sensors Data

{ {

Report to Clinicians Feedback to Patients
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Fetal Surgery

Single

Incision
Inflated Uterus




Injection of
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System
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robotics in medicine
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Robotic thread for brain’s blood
vessels

https://news.mit.edu/2019/robot-brain-blood-vessels-0828 37



Mazor X

The Mazor™ robotic guidance system

J U
A

combines surgical navigation with pre- and |

interoperative planning so you can perform
spinal surgery more efficiently.
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Software interaction with Mazor X, including pedicle screw selection along ‘wiin~
optimization of construct definition. Proper pedicle screw diameter and length can be
selected to conform to the patient's individual anatomy based on pre-operative
imaging using the work-station.
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Augmented reality surgical
navigation

* Augmented reality surgical navigation (ARSN) is a technique
in which images and additional information are projected
virtually in the surgical field. This is a new type of surgical
navigation that is used to guide the surgeon in pedicle screw
placement and to increase the accuracy.
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Virtual projection of 3D reconstruction
of CBCT images in the surgical field.
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Verification of the true Jamshidi™ needl
trajectory compared to the planned
screw trajectory.

Artificial intelligence and treatment algorithms in spine surgery, Orthopaedics & Traumatology:
Surgery & Research sVolume 109, Issue 1, Supplement, February 2023, 103456
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https://www.sciencedirect.com/journal/orthopaedics-and-traumatology-surgery-and-research
https://www.sciencedirect.com/journal/orthopaedics-and-traumatology-surgery-and-research
https://www.sciencedirect.com/journal/orthopaedics-and-traumatology-surgery-and-research/vol/109/issue/1/suppl/S

Intelligent Spine Technology

Intelligent
bypass

— Spinal cord

Electrode arrays

Injury

Electrode arrays
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Neuroprosthetics: from sensorimotor t._. .
cognitive disorders

a) Cortical implants for sensorimotor neuroprostheses

Microelectrode array (MEA) ECoG grid
b) Peripheral and spinal implants for sensorimotor neuroprostheses
Functional Electrical Stimulation (FES) Spinal Cord Stimulation (SCS) Peripheral Nerve Stimulation (PNS)
Kmemaﬂc g o 1 _ Nearva-alectrode interface
=% g
Implantabla ">

Lc lan pulse generalor

Extemnal
stimulator

oul S @
N D
PRI Transversal
Insartion T
[

Neurostimulation
pattems
Sensorized

axtansors
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a) Deep Brain Stimulation for Parkinson’s disease
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b) Cortico - basal ganglia - thalamocortical circuit

Prefrontal cortex

B Globus Pallidus (GP)
" Primary motor cortex (M1)

Striatum — Glutamatergic -8 Hyperdirect Projections

Supplementary motor g Substantia nigra pars ® GABAergic = =© Dopamine Projections
area (SMA) compacta (SNc) Bidirectional Q& DBS targets

B Thalamus B Subthalamic nucleus (STN) connections
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Walking naturally after spinal cord
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injury using a brain—spine interface

a
Cortical implants incarporating 2 x 84 channels

Ewctroconico-
graphy

Lesan

Wearable processing unit
Receive neural data

Targeted
epidural Extract spatial, temporal and
alectrical spectral features to predict

motor intentions
Send updated stimulation
commands

stimulation

Processing «

Selective
ctivaton
of muscles

-

implantabie p " ferator
- -

4

Stimustion

Nature volume 618, pages126—-133 (2023)
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Al can predict the progression of a disease
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Challenges and Questions

e How do we ensure the ethical use of Al in healthcare?

* What are the regulatory frameworks that need to be in
place for the safe and effective use of Al?

 How do we measure the quality and accuracy of Al in
healthcare?

50
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Challenges and Ethical Considerations

data privacy, potential biases in datasets

Radiology
(X-rays, MRIs)

Early detection

Cardiology Neuroimaging Risk Assessment Predictive analytics

‘ ‘ Disease
Diagnostic prediction and
imaging prevention

WHAT CAN

Monitoring
Treatment Al/ML DO IN through
Personalization wearable

HEALTHCARE?

devices

Pandemic
prediction

o4



Al

Note that!!

« AI may not replace human doctors.

e Since doctors are trained to not only diagnose and

treat diseases but also to provide emotional support
to patients.

* Al cannot replace the empathy and compassion that
doctors bring to their work.
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